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Abstract 

 

The paper develops a quadrex algorithm for quadratic programming problems (n=2) 

under linear and quadratic constraints. The quadrex algorithm centers on the behavior of 

the quadratic function at the origin and performs a series of translations and orthogonal 

rotations to obtain the extremum of the objective function. The method works for n > 2 

provided that the eigenvalues of the quadratic form part of the objective function  is 

strictly positive or that Q is strictly positive-definite. The quadrex algorithm is the 

quadratic counterpart of the simplex algorithm for linear programming models (LP).  

 

Keywords: simplex, quadratic, quadratic programming, quadrex, NP-hard AMS-2020134 

 

Introduction 

  

Linear programming (LP) models are extensively use in many scientific and business 

applications. Their popularity stem from the ease with which solutions are derived via the 

simplex algorithm (Taha, 1997). The simplex algorithm proceeds by examining each of 

the corner points of the convex polyhedron constituting the set of constraints through 

algebraic manipulation of the simplex tableau. The mathematical simplicity of the 

simplex algorithm often explains why many of the inherently non-linear optimization 

models are ―linearized‖. (Johnson, 2000)  

 

For non-linear programs (NLP), no simple algebraic algorithm exists currently that 

could take the place of the simplex methods in LP. Even in the case of a quadratic 

programming problem (QP), the user needs some working knowledge of the Kuhn-

Tucker conditions, Lagrange multipliers and Calculus in order to find the optimal 

solution, if it exists. 

 

The general QP problem can be stated as: 

 

  (1) ...𝑀𝑖𝑛: 𝑧 = 𝑋𝑇𝑄𝑋 + 𝐴𝑇𝑋𝑇 + 𝐾 

Subject To: 

                         𝑋𝑇𝜇𝑖𝑥 + 𝐵𝑖
𝑇𝑋𝑇 ≤ 𝐾𝑖     , 𝑖 = 1, 2, … , 𝑝 

                                                 
1 Liceo de Cagayan University  
2 Bukidnon State University  
3 Mindanao University of Science and Technology  
4 Jose Rizal Memorial State University  



January – December 2013                                  The Threshold Volume VIII  

115 

where X is an 𝑛𝑥1 vector of decision variables, Q is an 𝑛 𝑥 𝑛 symmetric matrix, A is an 

𝑛𝑥1 vector of constants and 𝐾𝑖 ∈ 𝑅. If the matrix  𝑀𝑖 = 0, then the ith constraints is a pure 

linear constraint. The classical approach to solve this problem is to form the Lagrangian 

function:  

 

  (2) ...𝐿 = 𝑧 +  𝜆𝑖
𝑃
𝑖=1 (𝑋𝑇𝜇𝑖𝑥 + 𝐵𝑖

𝑇𝑋𝑇 − 𝐾𝑖) 

 

and then set the derivatives 
𝜕𝐿

𝜕𝑥𝑗
∙

𝜕𝐿

𝜕𝜆𝑖
,
𝑖 = 1, 2, … , 𝑝
𝑗 = 1, 2, … , 𝑛

 equal to zero. 

 

The QP problem with linear constraints is of particular interest. The model is given 

by: 

 

Minimize (with respect to x) 

 

   
Subject to one or more constraints of the form: 

  (inequality constraint) 

  (equality constraint) 

 

where  indicates the vector transpose of . The notation  means that every 

entry of the vector  is less than or equal to the corresponding entry of the vector . 

 

If the matrix  is positive semidefinite matrix, then  is a convex function: In this 

case the quadratic program has a global minimizer if there exists some feasible vector 

 (satisfying the constraints) and if  is bounded below on the feasible region. If the 

matrix  is positive definite and the problem has a feasible solution, then the global 

minimizer is unique. If  is zero, then the problem becomes a linear program. 

 

Quadratic programming is particularly simple when there are only equality 

constraints; specifically, the problem is linear. By using Lagrange multipliers and seeking 

the extremum of the Lagrangian, it may be readily shown that the solution to the equality 

constrained problem is given by the linear system: 

 

   
 

where  is a set of Lagrange multipliers which come out of the solution alongside . 

 

The easiest means of approaching this system is direct solution (for example, LU 

factorization), which for small problems is very practical. For large problems, the system 

poses some unusual difficulties, most notably that problem is never positive definite 

(even if  is), making it potentially very difficult to find a good numeric approach, and 

there are many approaches to choose from dependent on the problem . For positive 

definite Q, the ellipsoid method solves the problem in polynomial time. If, on the other 
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http://en.wikipedia.org/wiki/Polynomial_time


          The Threshold Volume VIII                January – December 2013 

116 

hand, Q is indefinite, then the problem is NP-hard. In fact, even if Q has only one 

negative eigenvalue, the problem is NP-hard (Pardalos and Vavasi, 1991). 

 

Other methods for solving a QP is through the sequential quadratic programming 

method. Sequential quadratic programming (SQP) is an iterative method for nonlinear 

optimization. SQP methods are used on problems for which the objective function and 

the constraints are twice continuously differentiable. SQP methods solve a sequence of 

optimization subproblems, each of which optimizes a quadratic model of the objective 

subject to a linearization of the constraints. If the problem is unconstrained, then the 

method reduces to Newton's method for finding a point where the gradient of the 

objective vanishes. If the problem has only equality constraints, then the method is 

equivalent to applying Newton's method to the first-order optimality conditions, 

or Karush–Kuhn–Tucker conditions, of the problem.  

 

Consider a nonlinear programming problem of the form: 

 

   
 

The Lagrangian for this problem is 

 

   
 

where  and  are Lagrange multipliers.  

 

At an iterate , a basic sequential quadratic programming algorithm defines an 

appropriate search direction  as a solution to the quadratic programming subproblem 

((Frederic, Charles et al., 2006) 

 

 
 

Of course, there are other methods for solving (1) but these methods are equally 

inaccessible to non-mathematicians. Optimization by vector space methods, for instance, 

rely on embedding the NLP in an appropriate Hilbert space. The solution is the found by 

an application of the Projection Theorem. (D. Luenberger, 1987). It is, however, ironic 

that majority of the users of NLP‘s are non-mathematicians who apply this programming 

model to business, economics, and social science problems. 

 

This paper examines the QPM from an elementary algebra and analytic geometry 

perspective by developing an algorithm called quadrex. 

The Quadrex Algorithm 

http://en.wikipedia.org/wiki/NP-hard
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http://en.wikipedia.org/wiki/Nonlinear_programming
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http://en.wikipedia.org/wiki/Nonlinear_programming
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We restrict our attention to the case where n = 2. The general quadratic function in 

two variables: 

 

  (3)...𝑓 𝑥, 𝑦 = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓,   𝑐, 𝑏 ≠ 0 

 

can be written as: 

 

  (4) 𝑧 = 𝑓 𝑥, 𝑦 = 𝑋𝑇𝑄𝑋 + 𝐴𝑇𝑋𝑇 + 𝐾 

 

where:   𝑄 =  
𝑎 𝑐

2 
𝑐

2 𝑏
 , 𝐴𝑇 =  𝑑, 𝑒 , 𝑋 =  

𝑥
𝑦  . 

 

We note in passing that if 𝑧 =  𝑚 , a constant, then (3) represents a conic section. 

 

If 𝑐 = 𝑑 = 𝑒 = 0, then we obtain: 

 
       𝑓 𝑥, 𝑦 = 𝑎𝑥2 + 𝑏𝑦2 
 

If a and b are both positive, then the origin (0, 0) is a minimum while if a and b are 

both negative, then (0, 0) is a maximum. 

 

 Lemma 1. Let 𝑧 = 𝑎𝑥2 + 𝑏𝑦2, then: 

 

  (i) if a, b > 0 , then (0, 0) is a minimum; 

  (ii) if a, b < 0 , then (0, 0) is a maximum. 

 

Proof: 
 

Construct a neighbourhood around the origin 𝑁𝜀 0, 0 =    𝑥, 𝑦  𝑥2 + 𝑦2 < 𝜀2 . 

Let  𝑋0 , 𝑌0 ∈ 𝑁𝜀 0, 0 . Suppose that a, b > 0. Without loss of generality, let 𝑎 = min⁡{𝑎, 𝑏}. 
Then: 

     

                  0 < 𝑎𝑋0
2 + 𝑎𝑌0

2 < 𝑎𝜀2 < 𝑎𝑋0
2 + 𝑏𝑌0

2 
 

It follows that 𝑓 𝑋0 , 𝑌0 > 0 = 𝑓(0, 0) and the origin is therefore a minimum. The 

proof in the case of a maximum is similar.  

 

The effect of adding a linear term to Equation (5) is to shift the origin. Thus, 

 

  (6) 𝑧 = 𝑎𝑥2 + 𝑏𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝐾 

 

Shifts the origin from (0, 0) to  
−𝑑

2𝑎
,
−𝑒

2𝑏
 . By Lemma 1, this new origin is a minimum 

or a maximum depending on the signs of a and b. 

 

Lemma 2. Let = 𝑎𝑥2 + 𝑏𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝐾 , then 
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 (i) if a, b > 0, the point  
−𝑑

2𝑎
,
−𝑒

2𝑏
  is a minimum and 𝑍𝑚𝑖𝑛 = 𝐾 −  

𝑑2

4𝑎
− 

𝜀2

4𝑏
 ;  

 

 (ii) if a, b < 0, the point  
𝑑

2𝑎
,

𝑒

2𝑏
  is a maximum and 𝑍𝑚𝑎𝑥 = 𝐾 +  

𝑑2

4𝑎
+  

𝜀2

4𝑏
 . 

 

Proof: 

 Apply Lemma 1 to the new origin.  

 

 The case when a and b have opposite signs is a bit more tricky. Consider the 

behaviour of the function: 

 

  (7) ... 𝑧 = 𝑎𝑥2 + 𝑏𝑦2   , 𝑎, 𝑏 > 0 

 

at the origin. Equation (7) factors as: 

 

  (8) ...𝑧 =   𝑎 𝑥 +  𝑏 𝑦   𝑎 𝑥 −  𝑏 𝑦 , 

 

And the origin becomes a saddle point where the lines 𝑦 =
 𝑎 

 𝑏 
𝑥 and 𝑦 =

− 𝑎 

 𝑏 
𝑥 

intersect. 

 

General Unconstrained QP 
 

The general second-degree quadratic function can be represented by Equation (4). We 

attempt to reduce (4) to the form (6) by rotation of axes. Since Q is symmetric, it follows 

that Q can be represented as: 

 

  (9) ... 𝑄 = 𝑅𝐷𝑅𝑇 or  𝐷 = 𝑅𝑇𝑄𝑅 

  

where 𝐷 =  
𝜆1 0
0 𝜆2

  is a diagonal matrix whose elements are the eigenvalues of Q and R 

is an orthogonal matrix whose columns are the eigenvectors corresponding to the 

eigenvalues. Let: 

 

  (10)  𝑋∗ = 𝑅𝑋  𝑜𝑟 𝑋 = 𝑅𝑇𝑋∗, then (6) becomes: 

 

  (11) 𝑍 = 𝑋∗𝑇𝐷𝑋∗ + (𝑅𝐴)𝑇𝑋∗ + 𝐾  

   𝑍 = 𝜆1𝑥∗2 + 𝜆2𝑦∗2 + 𝑚1𝑥∗ + 𝑚2𝑦∗ + 𝐾 
 

which is now in the same form as equation (6). 

 

 Theorem 1: Let 𝑍 = 𝑋𝑇𝑄 𝑋 + 𝐴𝑇𝑋𝑇 + 𝐾 as previously specified. Then: 

  (i) if Q is positive-definite, a, b > 0, then Z has a minimum obtained by  

  Lemma 2. 

(ii) if Q is positive-definite, a, b < 0, then Z has a maximum obtained by 

Lemma 2. 

 



January – December 2013                                  The Threshold Volume VIII  

119 

Constrained Optimization 

 

Consider: 

  Minimize: 𝑧 = 𝑎𝑥2 + 𝑏𝑦2  , 𝑎, 𝑏 > 0 

  Subject To: 

   𝑐𝑥2 + 𝑑𝑦2 < 𝐾, 𝐾 > 0   
 

The global minimum (0, 0) is the origin and is a feasible solution since it satisfies the 

constraint. We will therefore be interested in the case when the constraint does not 

include the origin: 

 

  (12) ... Minimize: 𝑧 = 𝑎𝑥2 + 𝑏𝑦2  , 𝑎, 𝑏 > 0 

  Subject To: 

   𝑐𝑥2 + 𝑑𝑦2 ≥ 𝐾, 𝐾 > 0   
 

Here, the origin (0, 0) is not a feasible solution. 

 

Consider the arc traced by 𝑐𝑥2 + 𝑑𝑦2 = 𝐾. We claim that the optimal solution which 

is feasible lies along this arc. This arc is an ellipse. If 𝑐 > 𝑑, the major axis of the ellipse 

is along the vertical axis while if 𝑐 < 𝑑, the major axis is along the horizontal axis. 

 

Suppose 𝑐 > 𝑑, then the major axis has coordinates   
𝐾

𝐶
, 0  and  − 

𝐾

𝐶
, 0 . The minor 

axis has coordinates  0,  
𝐾

𝑑
,   and  0, − 

𝐾

𝑑
 . The minimum occurs along the arc at a 

point closest to the global (infeasible) minimum (0, 0), namely,  0,  
𝐾

𝑑
,   and  0, − 

𝐾

𝑑
 . 

 

Theorem 2. The optimal solution to: 

 

  Minimize: 𝑧 = 𝑎𝑥2 + 𝑏𝑦2  , 𝑎, 𝑏 > 0 

  Subject To: 

   𝑐𝑥2 + 𝑑𝑦2 ≥ 𝐾, 𝐾 > 0   
occurs at the endpoints of the minor axis of the ellipse 𝑐𝑥2 + 𝑑𝑦2 = 𝐾. 

 

Proof: 

 

Take any other point  𝑋0, 𝑌0  satisfying 𝑐𝑋0
2+ 𝑑𝑌0

2 = 𝐾 where 𝑐 <  𝑑. The value of Zat 

,  0,  
𝐾

𝑑
,   is: 

 

                             𝑍∗ =
𝑏 𝑘

𝑑
 

 

The value of Z at  𝑋0 , 𝑌0  is: 
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               𝑍0 = 𝑎𝑥0
2+ 𝑑𝑦0

2 > 𝑏𝑦0 ≥ 𝑏 ∙
𝑘

𝑑
= 𝑍∗ 

 

Hence, 𝑍∗ < 𝑍0 . ∎ 

 

 

The extension of Theorem 2 to several quadratic constraints is obvious. We consider 

the intersections of the elliptical constraints: 

 

                           𝑐𝑖 𝑥
2 + 𝑑𝑖  𝑦

2 ≥ 𝑘𝑖       , 𝑘𝑖 > 0   , 𝑖 = 1, … 𝑝 
 

and choose the intersection closest to the origin. 

 

If the objective function has a linear  component: 

 
                           𝑍 = 𝑎𝑥2 + 𝑏𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 

 

Then by Lemma 2, the global minimum occurs at  
−𝑑

2𝑎
,
−𝑒

2𝑏
 . We examine the 

constraints: 

         

                 𝑐𝑖 𝑥
2 + 𝑑𝑖  𝑦

2 ≥ 𝑘𝑖       , 𝑘𝑖 > 0    
 

and determine whether the global minimum is feasible or not. Otherwise, we take the 

intersection point of the constraints closest to the global minimum. The search for the 

closest point of intersection is facilitated by the fact that it is the one which matches the 

signs of the components of the global minimum. 
 

Numerical Illustrations 
 

We provide several numerical illustrations of the quadrex algorithm. 
 

Illustration 1. Obtain the extrema of: 

 

1. 𝑍 = 2𝑥2 + 3𝑦2 + 5 

2. 𝑍 = −4𝑥2 − 2𝑦2 + 7 

3. 𝑍 = 2𝑥2 + 3𝑦2 + 2𝑥 − 3𝑦 + 5 
 

Solution  
 

1. Since a = 2, b = 3 are both positive, the minimum is at (0, 0) and the 

minimum Z is 𝑍𝑚𝑖𝑛 = 5. 

 

2. Since a = -4, b = -2 are both negative, the maximum is at (0, 0) 𝑍𝑚𝑎𝑥 = 7. 

 

3. Rewrite: 𝑍 = 2  𝑥2 + 𝑥 +
1

4
 + 3  𝑦2 − 𝑦 +

1

4
 + 5 +

5

4
 

   𝑍 = 2  𝑥 +
1

2
 
2

+ 3  𝑦−
1

2
 
2

+
25

4
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The minimum occurs at  −
1

2
,
1

2
  and 𝑍𝑚𝑖𝑛 =

25

4
. 

 

Illustration 2.  

𝑀𝑖𝑛: 𝑍 = 2𝑥2 + 3𝑦2 + 2𝑥 − 3𝑦 + 5 
Subject To:  

 2𝑥2 + 3𝑦2 ≥ 2. 
 

Solution:  

          

Since the global minimum  −
1

2
,
1

2
   is not feasible, we locate the minor axis of the 

ellipse 2𝑥2 + 3𝑦2 = 2.  The endpoints are  0,  
2

3
  𝑎𝑛𝑑  0, − 

2

3
  .  Of the two,  0,  

2

3
  is 

closest to  −
1

2
,
1

2
 . Since 𝑍 = 7 −  6 at  0,  

2

3
  and 𝑍 = 7 +  6 at  0, − 

2

3
  the optimal 

solution is  0,  
2

3
 . 

 

Illustration 3. 

𝑀𝑖𝑛: 𝑍 = 2𝑥2 + 3𝑦2 + 2𝑥 − 3𝑦 + 5 
Subject To:  

 2𝑥2 + 3𝑦2 ≥ 2. 
      2𝑥2 + 𝑦2 ≥ 2. 
 

 

Solution: The intersections of the constraints are: 

 

  𝑦2 = 0 ⇒ 𝑦 = 0 

  𝑥2 = 1 ⇒ 𝑥 = ±1 
 

The point closest to the global minimum is (-1, 0). 

 

Here: 

  𝑍𝑚𝑖𝑛 = 2(−1)2 + 2 −1 + 5 = 5 
 

while Z at (1, 0) is: 

                  𝑍 = 2(1)2 + 2 1 + 5 = 9. 

Illustration 4. 

𝑀𝑖𝑛: 𝑍 = 2𝑥2 + 3𝑦2 + 2𝑥 − 3𝑦 + 5 
Subject To:  

 2𝑥2 + 𝑦2 ≥ 8. 
      𝑥2 + 2𝑦2 ≥ 8. 
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Solution: The intersections are at: 

    

 
 8

 3
,
 8

 3
 ,  

 8

 3
,
− 8

 3
  

 
− 8

 3
,
 8

 3
 ,  

− 8

 3
,
− 8

− 3
  

 

The intersection point closest to  −
1

2
,
1

2
   is  − 8

3 ,  8
3  . Here, 

 

                         𝑍𝑚𝑖𝑛 = 2 − 8
3  

2

+ 3  8
3  

2

− 2 − 8
3  − 3 8

3 + 5 

                  𝑍𝑚𝑖𝑛 =
16

3
+

24

3
− 2 8

3 − 3 8
3 + 5 

 

                         𝑍𝑚𝑖𝑛 =
55 − 10 6

3
 

 

Illustration 5.  

 

Obtain the minimum of Z = 2x
2
 + 3y

2
 + z

2
 + 4x – 6y -2z + 6. 

 

Solution: 

 

We can rewrite the function as: 

 

            Z = 2(x + 1)
2
 + 3(y-1)

2
 + (z-1)

2
 + 12 

 

Since the coefficients of the squared variables are all positive, it follows that (-1,1,1) 

is a minimum and then Zmin = 12. 

 

Conclusion 

 

The proposed quadrex algorithm examines the behaviour of the quadratic objective 

function near the origin or a translate of the origin. If that origin is feasible, then it is the 

optimal solution. Otherwise, the point of intersection of the functions in the constraint set 

closest to that origin is the optimal solution. The method  works whenever the matrix Q 

of the quadratic form in the objective function is strictly positive-definite with no 

negative eigenvalue. 
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