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Abstract 

 

 Multidimensional scaling (MDS) attempts to represent higher dimensional p-variate 

vectors in lower dimensional spaces such that the interitem proximities are closely 

preserved. The paper suggests two (2) new procedures for performing MDS that 

minimizes a stress function using pairwise correlations and by utilizing aspects of factor 

scores in factor analysis. Results reveal that the two (2) procedures perform as well as, if 

not better than, the classical minimization search algorithm. 
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Introduction 
 

 Multidimensional scaling (MDS) aims to represent p-dimensional random vectors as 

lower q-dimensional vectors (q < p) in such a way that the original interitem proximities 

in Rp are as closely preserved as possible in Rq. Kruskal (1964) and Shepard (1980) 

pioneered in MDS development and proposed an algorithm that minimizes: 

 

   (1)… 𝑆𝑡𝑟𝑒𝑠𝑠 = [
ΣΣ
𝑖<𝑗
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where  𝑑𝑖,𝑗
(𝑝)

 is the distance of item i from item j in Rp and 𝑑𝑖,𝑗
(𝑞)

 the corresponding distance 

in Rq. Takane (1987) introduced a more popular stress measure: 

 

   (2)… 𝑆𝑡𝑟𝑒𝑠𝑠 = [
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which lies between 0 and 1. In both instances, however, a search algorithm (usually, a 

steepest descent method) is implemented to look for points in Rq that minimize (1) or (2). 

 

Applications of MDS abound in practice. A poverty mapping application was tried 

out by Miller (2001), Chen (2007) and others using MDS in q = 2 dimensions. Young 
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and Hammer (1987) provides an excellent account of the history and various applications 

of MDS in the social sciences, economics, engineering and the applied sciences. 

 

 The main problem with current MDS methodology is the difficulty in implementing 

the search algorithm. The present paper aims to address the following issue: Find the 

lowest dimension 𝑞 (𝑋𝜖𝑅𝑞) to represent a p-dimensional vector 𝑌 (𝑌𝜖𝑅𝑝) such that the 

interitem Euclidean distances in Rp are preserved. Corollarily, the second approach 

suggested in this paper addresses the more general MDS problem. 

 

Maximal Dimension Reduction: The Correlation Approach 
 

 Let  𝑋(𝑝)𝜖𝑅𝑝 be a p-dimensional random vector with distribution function F(.) 

assumed absolutely continuous with respect to a Lebesgue measure. Let 

𝑋1
(𝑝)

, 𝑋2
(𝑝)

, … , 𝑋𝑛
(𝑝)

  be iid F(.) and suppose that 𝑋(𝑝) has finite second moment. i.e. each 

component Xi of 𝑋(𝑝) has 𝐸(𝑋𝑖
2) < ∞. 

Let: 

 

   (3)   𝑋𝑗
(𝑝)

= (

𝑥1𝑗

𝑥2𝑗

⋮
𝑥𝑝𝑗

)    ,   𝑗 = 1, 2, … , 𝑛. 

 

With respect to a Euclidean distance, it is possible to order the distances  

   𝑑𝑖,𝑗
(𝑝)

= [∑ (𝑋𝑘𝑗 − 𝑋𝑘𝑖)
2𝑝

𝑘=1 ]

1

2
     𝑖 ≠ 𝑗, as: 

 

   (4)   𝑑𝑖1,𝑗1

(𝑝)
≥ 𝑑𝑖2,𝑗2

(𝑝)
≥ ⋯ ≥ 𝑑𝑖𝑛,𝑗𝑛

(𝑝)
 

 

where items 𝑖1 and 𝑗1 are the “farthest” items from each other. Without loss of generality, 

we assume that the component Xi of 𝑋(𝑝) are standardized so that 𝐸(𝑋𝑖) = 0, 𝑣𝑎𝑟(𝑋𝑖) =
1, and the relation in (4) applies to the random variables. 

To motivate the proposed approach for maximal dimension reduction, consider 

the bivariate observations: 

  

 𝑋1 = (
𝑥11

𝑥21
) , 𝑋2 = (

𝑥12

𝑥22
) , … , 𝑋𝑛 = (

𝑥1𝑛

𝑥2𝑛
). 

 

   If 𝑑(𝑋1, 𝑋2) < 𝑑(𝑋3, 𝑋4) then: 

 

   (5)   (𝑋11 − 𝑋12)2 + (𝑋21 − 𝑋22)2 < (𝑋13 − 𝑋14)2 + (𝑋23 − 𝑋24)2. 
 

 We wish to reduce the dimension from p = 2 to q = 1 while preserving  

𝑑(𝑋1
(𝑞)

, 𝑋2
(𝑞)

) < 𝑑(𝑋3
(𝑞)

, 𝑋4
(𝑞)

) . Suppose that 𝑐𝑜𝑟𝑟(𝑋1𝑗, 𝑋2𝑗) = 1, then this means that 

we can express the second coordinate as a linear multiple of the first coordinate, viz.  

(𝑋2𝑗 = 𝐾𝑋1𝑗). Using this relation and substituting into (5), we obtain: 
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   (6)   (𝐾2 + 1)(𝑋11 − 𝑋12)2 < (𝐾2 + 1)(𝑋13 − 𝑋14)2 

 

 Or:  (𝑋11 − 𝑋12)2 < (𝑋13 − 𝑋14)2 

 

   𝑑(𝑋1
(𝑞)

, 𝑋2
(𝑞)

) < 𝑑(𝑋3
(𝑞)

, 𝑋4
(𝑞)

). 

 

 Inequality (6) says that we can drop the second coordinate (hence, reduce the 

dimension to q = 1) and still preserve the inequality. 

 

 In general, the same reasoning follows if 𝑐𝑜𝑟𝑟(𝑋1𝑗, 𝑋2𝑗) = 𝜙 ≠ 0. Express 𝑋2𝑗 =

𝜙𝑋1𝑗 and note that (𝑋1𝑗, 𝑋2𝑗) = 𝐸(𝜙𝑋1𝑗
2) = 𝜙 𝐸(𝑋1𝑗

2) = 𝜙 . What remains to be 

investigated is the case when the component are orthogonal, that is, if 𝑐𝑜𝑟𝑟(𝑋1𝑗, 𝑋2𝑗) =

0. In this case, no linear relationship exists between (𝑋1𝑗𝑎𝑛𝑑 𝑋2𝑗) and we conclude that 

no reduction is possible that preserves (5). We state these observations as a Theorem:   

 

 Theorem: Let X(p) be a p-dimensional random vector such that 𝜌𝑖𝑗 ≠ 0, 𝑖 ≠ 𝑗. Let 𝛾 

be the number of distinct pairs xi and xj for which 𝜌𝑖𝑗 ≠ 0. Let 𝛾 be the number of distinct 

pairs xi and xj for which  𝜌𝑖𝑗 ≠ 0, 𝑖 ≠ 𝑗 . Then, the p-dimensional random vector X(p) can 

be reduced to a q-dimensional random vector X(q), 𝑞 < 𝑝, 𝑞 = 𝑝 − 𝛾 such that the 

original inter-item distance orderings are preserved . ∎ 

 

 The proof is an exercise in algebra. In order to implement Theorem 1 in practice, we 

construct the  
𝑝(𝑝−1)

2
 correlation matrix and test: 

 

 Ho:𝜌𝑖𝑗 = 0 against Ha: 𝜌𝑖𝑗 ≠ 0. 

 

 We are interested only in those 𝜌𝑖𝑗 for which the hypothesis in rejected. 

 

Algorithm: 
 

1. Standardized the components of 𝑋1
(𝑝)

, 𝑋2
(𝑝)

, … , 𝑋𝑛
(𝑝)

 by subtracting the means and 

dividing by their standard deviations. 

2. Obtain the 𝑀 =
𝑛(𝑛−1)

2
 inter-item distances 𝑑𝑖𝑗 and arrange: 

 

𝑑𝑖1,𝑗1

(𝑝)
> 𝑑𝑖2,𝑗2

(𝑝)
> ⋯ > 𝑑𝑖𝑛,𝑗𝑛

(𝑝)
 

 

3. Compute the 𝑄 =
𝑝(𝑝−1)

2
 correlation coefficient 𝜌̂𝑖𝑗. 

4. Test Ho: 𝜌𝑖𝑗 = 0 against Ha: 𝜌𝑖𝑗 ≠ 0. 

5. Collect all  𝜌𝑖𝑗 ≠ 0 and use either Xi or Xj. Put the retained variables in 𝑋𝑖
(𝑞)

. 

6. Obtain the inter-item distances in Rq and arrange: 
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𝑑𝑖1,𝑗1

(𝑞)
> 𝑑𝑖2,𝑗2

(𝑞)
> ⋯ > 𝑑𝑖𝑛,𝑗𝑛

(𝑞)
 

 

7.       Compute the stress function. 

 

 The component of X(q) obtained in this manner are now mutually orthogonal and 

cannot be reduced further by the correlation approach. However, if it is desired to reduce 

the dimension further, then we suggest using the classical MDS search algorithm. 

 

 In the correlation approach, we drop one of the variables Xi or Xj 

when 𝑐𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑗) = 𝜌𝑖𝑗 > 0. The vector X(q) then amounts to a projection of the vector 

X(p) in Rq. The correlation approach ensures preservation of the rank ordering but does 

not guarantee that the stress function will be minimum there. 

 

 Let 𝑉1, 𝑉2, 𝑉3, 𝑉4𝜖𝑅𝑝 such that 𝑑(𝑉1, 𝑉2) < 𝑑(𝑉3, 𝑉4) and let 𝑉1
∗, 𝑉2

∗, 𝑉3
∗, 𝑉4

∗𝜖𝑅𝑞 

obtained by the correlation approach. Suppose that 𝑉1 = (𝑋1, 𝑋2, 𝑋3, . . ., 𝑉𝑝)′ and that 

𝑐𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑗) = 𝜌𝑖𝑗 > 0. Instead of dropping either Xi or Xj, we seek a linear combination 

𝑋𝑗 + 𝜑𝑋𝑖 such that 𝑑(𝑉1
∗, 𝑉2

∗) < 𝑑(𝑉3
∗, 𝑉4

∗) and: 

 

   (7) 𝛾 = 𝑑2(𝑉3
∗, 𝑉4

∗) − 𝑑2(𝑉1
∗, 𝑉2

∗)   is minimum, 𝛾 ≥ 0. 

 

 The problem reduces to a one-dimensional minimization problem. The solution to (7) 

minimizes the Takane (1987) stress function. 

 

Factor Score Representation 

 

 A generalization of the correlation approach in Section 2 consists of combining in 

some meaningful way, all those variables that highly correlate with one another. The 

linear combination of these highly correlated variables will then represent one (1) 

dimension. A natural way to group variables according to their correlations with each 

other is through factor analysis. 

 

 The usual orthogonal factor model is: 

 

   (8) 𝑋 = 𝐿𝐹 + 𝜀 

 

Where X is a p x 1 random vector (observed), L is a p x q matrix of factor loadings, F is 

an unknown q x 1 vector of factors, 𝜀 is a random error with 𝐸(𝜀) = 0 and 𝑉𝑎𝑟(𝜀) = 𝜓 a 

diagonal matrix. The model assumes 𝐸(𝐹) = 0, 𝑉𝑎𝑟(𝐹) = 𝐼 𝑎𝑛𝑑 𝑐𝑜𝑣(𝐹, 𝜀) = 0. 

 

 In the extreme case when 𝑐𝑜𝑣(𝑋) = Σ is diagonal, i.e. the components of X are 

uncorrelated, then the individual xi’s themselves are the factors and no dimension 

reduction is possible. 

 

 The estimated factor scores are: 
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   (9)  𝑓𝑗 = 𝑙𝑖1𝑋1 + 𝑙𝑖2𝑋2 + ⋯ + 𝑙𝑖𝑝𝑋𝑝,    𝑖 = 1, 2, … , 𝑞 

 

and we propose using only those 𝑙𝑖𝑗 > 0. This latter restriction stems from our desire to 

combine highly correlated random variables only. 

 

Numerical Illustration and Simulation 
 

 We provide one (1) numerical illustration of the procedures and carried out extensive 

Monte Carlo simulation to assess the performance of the proposed procedures. 

 

 Numerical Illustration 

 

 The original random vector consists of 4 dimensions (height, weight, IQ, Math). Five 

(5) individuals of various heights, weights, IQ’s and Mathematical abilities are illustrated. 

Table 1 shows the original data and their standardized values. 

 

Table 1    Original Data and Standardized Values 

 

Original Data Standardized Data 

Individual  Height     Weight    IQ       Math   Height     Weight         IQ         Math 

A 

 

B 

 

C 

 

D 

 

E 

     5.5           72        110       80  
 

     5.3           70 120      85 

 

     5.7           75        130       90 

 

     5.9          78         135       94 

 

     5.6           73         140      96 

-0.447       -0.525     -1.412       -1.372 
 

-1.341        -1.180    -0.581       -.610 

 

0.447          0.459      0.249       0.153 

 

1.341          1.443      0.664       0.762 

 

0.000          -0.197     1.079       1.067 

 

 The computed correlations are: 

 

  𝑐𝑜𝑟𝑟(𝐻, 𝑊) = 0.990 (𝑝 < .001) 

  𝑐𝑜𝑟𝑟(𝐼𝑄, 𝑀𝑎𝑡ℎ) = 0.997 (𝑝 < .001) 

  𝑐𝑜𝑟𝑟(𝐼𝑄, 𝐻) = 0.604 (𝑝 = 0.281) 

  𝑐𝑜𝑟𝑟(𝐼𝑄, 𝑊) = 0.574 (𝑝 = 0.314) 

  𝑐𝑜𝑟𝑟(𝑀𝐴𝑡ℎ, 𝐻) = 0.631 (𝑝 = 0.254) 

  𝑐𝑜𝑟𝑟(𝑀𝐴𝑡ℎ, 𝑊) = 0.600 (𝑝 = 0.285) 
  

so that only two (2) correlations are found significant beyond the .001 level. Thus, it 

appears that the dimension could be effectively reduced to q = 2. Table 2 shows d(A, B), 

d(B, C), d(C, D) and d(D, E) from among the ten (10) possible distances. 
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Table 2    Sample Distances 

 

Q=2 Reduced Space 

Distances Standardized 

Data 

Rank (H, Math) Rank (H, IQ) Rank 

d(A, B) 

 

d(B, C) 

 

d(C, D) 

 

d(D, E) 

1.581 

 

2.676 

 

1.521 

 

2.180 

2 

 

4 

 

1 

 

3 

1.175 

 

1.945 

 

1.083 

 

1.376 

2 

 

4 

 

1 

 

3 

1.220 

 

1.972 

 

0.986 

 

1.404 

2 

 

4 

 

1 

 

3 

 

 Tabular values shows that the rank orders of the original distances are perfectly 

preserved in the reduced q = 2 dimensional space. For these four (4) distances the Takane 

(1980) stress is: 

 

 Reduced to (H, Math): Stress = 0.84 

 Reduced to (H, IQ)  : Stress = 0.82 

 

Both of which are less than 1. 

 

Table 3 shows two (2) factor score representation of the data viz - a - viz the distances: 

 

Table 3    Two-Factor Representation 

 

Two-Factor Representation 

Distances Original Rank F1              F2 New 

Vector 

Distance 

Rank 

d(A, B) 

 

d(B, C) 

 

d(C, D) 

 

d(D, E) 

1.581 

 

2.676 

 

1.521 

 

2.180 

2 

 

4 

 

1 

 

3 

-1.656      -0.580 

 

-0.708      -1.500 

 

0.239       0.540 

 

0.847        1.660 

 

1.277       -0.120 

1.321 

 

2.249 

 

1.274 

 

1.830 

2 

 

4 

 

1 

 

3 

 

 Again the rank orders of the distances are exactly the same for p = 4 and q = 2 

representations. The Takane stress is: 

 

 Stress = 0.29 

 

which shows an excellent fit. 
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